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Composites based on glass, carbon, or boron fibers with epoxy resin as a binder are widely used 
in aeronautical, space, and rocket facilities, as well as in machine building [1, 2]. The properties of these 
composites can be improved with simultaneous simplification of production processes by using the energy of 
an electromagnetic field of super-high frequency (SHF) in the drying and solidification stages [2]. Using SHF- 
heating, i.e., volume, distant, controlled energy supply, one can decrease by severalfold the duration of drying 
and polymerization. However, volume heating with local energy release that depends on the electrophyslcal 
properties of the components can be accompanied by local superheating with undesired consequences for the 
quality of the products. Optimal heating regimes in an SHF field can be chosen by calculation of the thermal 
fields appearing in the composite under such heating, since direct experimental determination of thermal fields 
is hardly possible. 

In this work, we present an analytical solution of the problem for a unidirectional composite with 
regular arrangement of fibers. This structure is the simplest from a technological viewpoint and is used as the 
model object. 

1. We consider the heating of a composite in a quasi-stationary electromagnetic field (a high-frequency 
field with a slowly changing amplitude) [3]: 

E.(x,t) = E ( x ) x ( t ) e x p ( - i , o t ) ,  (1.1) 
where ]OX/Ot] << wX and 102X/Ot21 << w2x . The composite itself is simulated by an ideal periodic medium 
that is a combination of periodicity cells aY with a characteristic size a that is small compared with the body 
dimensions and with the length of electromagnetic waves that heat the composite. 

The temperature field under these conditions is determined from the heat-conduction equation 

aT O OT'  
pc--~ = Oxi k Oxi/  + D. (1.2) 

Here the density p, the specific heat c, the heat conductivity A, and the specific capacity of the heat 
sources averaged over the vibration period D = (1/2)X 2 (t)we~Ek-Ek are rapidly oscillating functions of the x 
coordinate (e" is the imaginary part of the complex dielectric permeability e. which takes into account both 
the conductivity and polarization relaxation of the medium). In (1.2) and below, summation is performed 
over the repeated subscripts i, j ,  k = 1, 2, 3. 

In the case of ideal contact, the following conditions should be satisfied at the interface F of the 
composite: 

- -  ui  --- O. ( 1 . 3 )  

Here [ ] is the jump of the quantity and v is a unit normal to r directed toward the jump. 
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2. We construct a solution of problem (1.1)-(1.3) as a series in small parameter u using the averaging 
technique [4, 5]: 

T(x, t)  = T0(x,y,t)  + aT , (x ,y , t )  + a2T2(x,y, t ) + . . . .  (2.1) 

Here, along with the global space variables x = {Xl,X2, x3}, we introduce the local variables y = x /a .  The 
functions Ti are periodic in the variable y with a periodicity cell Y. For brevity, we introduce the notation 
for the operator 

0(0 ) 
LoT(T ) = ~ A ~ . 

Confining our consideration to macrohomogeneous media, we assume that p, c, A and e. are Y-periodic 
functions only of the variable y. 

The specific capacity of the heat source D is determined by solution of the appropriate electrodynamic 
problem [6]: 

E(x) = E(~ + aE(1)(x,y) + . . .  , 

whence it follows that 

D(x ,y)  = D(~ + a D 0 ) ( x , y )  + . . .  
(2.2) 

[D (~ = (1/2)X2we"E!~176 , E!~ = (8, i + (I)jli(y))(E~~ 

Here and below, differentiation with respect to yi is denoted by a vertical bar, (li), and differentiation with 
respect to xi is denoted by a comma, (, i). 

The functions r are Y-periodic solutions of the local electrodynamic problem: 

(c*(I>Jli)li + c*lJ = 0, [(I)i] r = 0, [r + (I)jli)] rVi = 0. (2.3) 

Angle brackets ( ) denote an average value over the cell volume [Y[, for example, 

1 f D ( 0 ) ( x , y ) d y  = 1 X2w(Aij)(E!O))(x)(E~O))(x ) (2.4) (D(~ _- ~ 

Y 

" 6 

Substituting (2.1) and (2.2) in Eq. (1.2) and equating the coefficients of equal exponents a -2, a -1, 
and a0, respectively, we obtain the equations 

LyyTo = 0; (2.5) 

L~T1 = - (  LyzTo + LzyT0); (2.6) 

OTo D (~ - (L~xT1 + L~T1 + LxxTo). (2.7) LyyT2 = pc ~ - 

It follows from (2.5) that To is independent of the local variable y: 

To = T0(x, t). (2.8) 

With allowance for (2.8), Eq. (2.6) becomes 

LyyT1 = - Al iTo, i .  

The Y-periodic solution of (2.9) is of the form 

Tl(x, y) = •i(y)To,j(x), 

where ~ j (y)  (j = 1, 2, 3) is a periodic solution of the equations 

()~'I'11~)1~ + )~b = o, 

(2.9) 

(2.10) 

(2.11) 
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which differ from the electrodynamic equations (2.3) only by the substitution of A(y) for r  In view of 
(2.8) and (2.t0), Eq. (2.7) becomes 

OTo D (~ - Tij(y)To,ij [Tij(y) = Ali(I) j + 2A~jli + ~Sq]. (2.12) LyyT2 = pc - ~  - 

Averaging (2.12) over the cell volume and taking into account the Y-periodicity of ~ j (y ) ,  we obtain the 
heat-conduction equation for an equivalent homogeneous medium: 

{pc) O~--'~ = AijTo,ij + (n(~ (2.13) 

where Aij = {A(6ij + ~j,i)) is the effective heat conductivity of the composite. 
Excluding the quantity OTo/Ot from (2.12) and (2.13) and taking into account expression (2.4), we 

obtain 

p c ^  TijlTo,i j 1 2 (0) o) L,,T2 = ( ~ - ~ ) ~ i j -  , + ~)~ w N q ( E  i )(-~j ) 

pc (2.14) 
[Nij = Nq(y)= {--~(/Nij) -/Nq]. 

The solution of Eq. (2.14) is representable as 

1 
T2 = T2(x,y) = r + ~ X2wvij(E}~176 (2.15) 

where the Y-periodic functions (I)ij = (I)ij(y) and vii = vii(y) are solutions of the equations 

Lyy~ij = ~c) ~ij -- Tij; (2.16) 

Lyyvij = Nij. (2.17) 

It is not hard to verify that the condition of the theorem of existence and uniqueness of solutions of 
local problems [4], which reduces to the equality to zero of the mean value of the right-hand side, is satisfied 
for Eqs. (2.3), (2.11), (2.16), and (2.17). 

Summing up, we find that the temperature distribution in the composite is of the form 

T(x, y, t) = T0(x, t) + a#i(y)To,i(x, t) 

+a2[r + 1x2(t)wvij(y){E!~176 + . . . .  (2.18) 

The first term on the right-hand side of (2.18) is the temperature T0(x, t) -- (T(x, y,  t)) averaged over 
the structural-cell volume, or, in other words, the temperature field in the equivalent homogeneous material 
with effective characteristics Aq. The subsequent terms are local corrections to T0(x, t) of different orders of 
smallness, each having a zeroth mean value over the volume of the periodicity cell Y. It should be noted that 
in macrononuniform temperature fields, in which To,i ~ O, the correction is on the order of a and is determined 
by the effective characteristics of the material ~ij, (pc), and (A/j), while in macrouniform temperature fields, 
in which To,i = To,ij = O, the correction is on the order of a 2 and depends on the distribution of sources over 
the cell: 

1 2 2 . . . .  (Oh(E--(/o)) (2.19) T = T(y,  t) = To(t) + ~ a X (t)wvij(y)(~i / + . . . .  

The conditions at the interface F of the composite are obtained from (1.3) and (2.18): 

= o,  + = o; (2 .20)  

[r = O, [A(~k6/j + ejkli)]vi = O; (2.21) 

[vij] = O, [AVjkli]Vi = 0. (2.22) 
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3. We consider an idealized unidirectional composite whose fibers have a circular cross section with 
radius aR; the axes of the fibers pass through the centers of the periodicity ceils Y perpendicular to the plane 
zl ,  z2. We confine ourselves to two cases of regular arrangement of fibers with either a regular square lattice 
(Fig. la) or a regular triangular lattice (Fig. lb) in the cross section. The periodicity ceils in the local system 
of the yl, y2 coordinates are a singular square or a rhomb with a unit  side and an acute angle of 60 ~ (Fig. 2a 
and 2b). 

In what follows, we assume that  the matrix Y1 and the fiber 1~ are homogeneous, and heat release occurs 
e"" " Y1), const, and e~(y) e~ only in the fibers, i.e., A(y) = Al = const, .tY] = 0 (y E A(y) = A2 = = = const 

( y E  ]/2). 
Because of the complete analogy of the local electrodynamic problems (2.3) and the heat-conduction 

problems (2.11) and (2.20), the solutions are described by the same harmonic functions ~l (yl ,y2)  and 
~2(yl, y2) constructed in [6]. For example, for the fiber 1/2, 

OO OO 

t~?  ) = R ~ Z ~ 2 k + l k - l , r  I a(2) r./u~2k+l cos(2k + 1)0, ~2)  = R ~(--1)kA~2k)+l(r/R)2k+lsin(2k + 1)0, (3.1) 
k=0 k=0 

where a(2) "'2k+l are constants. They are calculated approximately in [6] and depend on the fiber radius R, on 
the fiber volume content v = IY~I/IYI, and also on the dimensionless parameter  ae = (e,1 - e,2)/(e,1 + e,2) 
for electrodynamic problem or on ae = (A1 - A2)/(A1 + A2) for heat-conduction problems. 

Using relations (3.1), one can calculate the specific heat-release intensity (D (~ from (2.4). Upon 
integration, we obtain that  among (Aij), only 

,, = 1~A(2) ~(2) (/,11) = (A~) = e2v/,, (A33) = @ (~ 1 + A?) + ~?) + ~ (2~ +. 2.+, ~.+~ 
n-.~--0 
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are nonzero. Therefore, 

(D(~ = (1/2)X2We~v(A(E~~ 2 + A(E~~ 2 + (E~~ 

If the solutions of [6] for regular arrangements of fibers are used, for A we have the approximate expression 

~ =  1 + ( 2 k -  1)g~R~m + O ( a ~ ) ,  

where 
ae2(l + ~e) ~2(I + ~) ~ ( i  + ~e)(l + ~). 

B = (1 + ~ev) 2 + (I + ~ev)  2 + (1 + ~ev)(1 + ~-v)' 

k = 2 for the square and k = 3 for the triangular arrangement of fibers; the values of the constants g• are 
presented in [7]; and ~e = (r - r162 + r (no summat ion  over k). 

Using the results of [6] and the above analogy, we write the effective heat-conductivities of the composite 
~,j as 

( ~3V2k'{'l ) 
1 - ~ u  A + O(v41:), ~3s = XI(1 - v)+X2v, ~/j = 0 (i # j ) .  

�9 ~ I I  ---- ~22 ---- V~l 1 ~ aev (1 + a~v) 2 

Here ze = (~1 - )~2)/(,~1 -]" )~2); A = 0.612 and k = 2 for the square arrangement of fibers and A = 0.151 and 
k = 3 for the triangular arrangement.  

4. We estimate the local temperature  differences inside a composite unit  cell in the macrouniform 
temperature field (2.19). 

We consider a composite with a regular square arrangement of fibers heated by a field with the electric 
component E directed across the fibers in the xl direction: 

T = To(t) + -~1 a2X2(t,)wv11(y)(E~O)) 2 + . . . .  (4.1) 

To solve the formulated problem, one should construct a function vH(y) that  is a doubly periodic 
function in the matrix Y1 and, following (2.17), satisfies the Poisson equation with the constant right-hand 
side 

PlCl / n  , ,OlClVr 
�9 ~1 Av~ )'- A1 = const A1 = ~ ' ~ 1 1 1  = ~ ) .  (4.2) 

In the fiber II2, vll is a regular function that  satisfies the Poisson equation with the variable right-hand side 

where A2 = (p2c2vr )/ (pc); 

= " r r 0~ A2Av~21 ) A2 - e2~02 [ , ], (4.3) 

~-----(2) r ~----~2) r ~----(2). (4.4) 

and the function (I)~ 2) is given by formula (3.1) 
At the interface F (r = R), conditions (2.22), which in this case reduce to 

0V~ 2) ~V(1) 
v 11 (4.5) 

should be satisfied. One should supplement (4.2)-(4.5) by the condition 

0111) ---- 0. (4.6) 
Substi tuting representations (3.1) into (4.4), we obtain 

+ 9A(21 2) r R 4  + + ~2 ---- 1 + A~ 2) + A--(12) +,~1 , 3 3 ( / ) -{- 

+'~12)Ai2))(r/R) 2 cos2# + 7(A~ 2) + ~ 2 )  + A?)A---(72) + ~A12)AI2))(r/R)6 cos60 + . . . .  (4.7) 
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For the composite with a square arrangement of fibers, with allowance for the coefficients calculated in [6], 
Eq. (4.7) is written as 

~2 = a + bR s + dRS(r/R) 4 - 3Ag2R4(r/R) 2 cos 20 - 7Ag4RS(r/R) 6 cos 68 + O(R 12) (4.8) 

[the coefficients a, b, d, and A are not included in the final expression (4.11) for T,  so the formulas for them 
are not presented herein]. 

The general doubly periodic solution of the Poisson equation (4.2) is constructed as the sum of the 
partial doubly periodic solution of the Poisson equation and the arbitrary doubly periodic harmonic function 

1 c~ p(2k)(z) 
= Al(z  - 2 Re + Z: D k+ Re (2k + 1)!' (4.9) 

k----0 

where u(z) = f r r and P(z) are the Weierstrass functions. The  regular solution of the Poisson 
equation (4.3) written with allowance for (4.8) is of the form 

A2v~2) = 4"1 (A2 - e ~ ( a  + bRS))r 2 - 1 e~dR4r636 + le~g2AR2r4 cos20 

+ s~g4AR2r 8 cos 60 + O(R 12) + ~ C2k(r/R) 2k cos 2kO. (4.10) 
k--0 

Substituting (4.9) and (4.10) into conditions (4.5) and (4.6) and equating the coefficients of cos2k0 (k = 
0, 1, 2 , . . . ) ,  we obtain an infinite system of linear algebraic equations for the coefficients D2, D4, . . . ,  Co, C2, 
C4, . . .  that  depend on the small parameter R ( 0 < R < 1/2). Analysis of this system shows that  with a 
decrease in R all these coefficients decrease not slower than R 4, except for the coefficient Co, which increases 
without bound: Co = [-A1/(2~r)](A2/A1)In R. If we consider only this higher term in expansion (4.10), then 

v~ ) = [-A1/(2~rA1)]lnR + . . . .  In this case, we find from (4.1) that  the fiber tempera ture  is expressed as 

1 ,E(O)~2 T = To(t) Jr -~l~'7X2(t)w(~2R21n-R~ I i Jr . . . .  (4.11) 

Here 
"7 = p lCl / (pc)  = p lC l / (p lC l (1  - -  ~'n 2) Jr p2c27rn2). 

Analysis of (4.9) shows that  the temperature  distribution in the matrix is of the form 

1 /  
= r0(0  + In + . . . .  T 

5. By way of example, we consider a polymer carbon-fiber composite with epoxy resin as a binder. 
The volume content of the fiber in the composite is v = 0.6. The  fiber parameters are as follows: density 
P2 = 1700 kg .  m -a, heat capacity c2 = 1.07 k J / ( k g .  K), radius a R  = 1.3 �9 10 -6 m, and dielectric-loss factor 
e" = 4.1 �9 10 -5 S. sec/m. The  characteristics of the epoxy resin are: density pl = 2168 kg.  m -a ,  heat capacity 
Cl = 0.5 kJ / (kg.K) ,  and heat conductivity A~ = 0.21 W/ (m.K) .  The  composite is heated in an electromagnetic 
field with average electric-component intensity E = 100 V .  m -1 and frequency w = 2.45 �9 109 sec -1. The 
amplitude of the field remains unchanged with time. 

Substi tution of the indicated values in (4.11) yields a f iber-temperature nonuniformity A T  = 1.31 �9 
10 -5 K. This value is vanishingly small compared with the average tempera ture  To(t), which should be 50- 
70~ according to the heat- t reatment  technology. 

An increase in the fiber radius to a R  = 0.5 �9 10 -3 m increases the tempera ture  nonuniformity of the 
periodicity cell to A T  = 1.9 K. This nonuniformity is noticeable, but is still acceptable technologically, since 
it is 0.3% of the lower limit of the admissible temperature  range. Under these conditions, an increase in the 
field intensity, for example,  by a factor of 2 (which corresponds to an increase in the supplied SHF energy by a 
factor of 4 and to an equivalent increase in the heating rate) increases the nonuniformity to A T  = 7.6 K. This 
is 10% higher than the upper  limit of the admissible range and is technologically on the verge of permissible 
values, i.e., a further increase in the supplied intensity is inadmissible. 
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The superheating values were verified experimentally as follows. A unidirectional carbon-fiber 
composite on unsolidified epoxy resin (with the above characteristics) with a fiber radius of 0.5.10 -3 m 
and an overall thickness (2-3) �9 10 -3 m in the form of a 0.2 x 0.1 m plate was placed at the opening of the 
SHF-source horn. The field intensity was measured by a special gauge. Uniform drying and polymerization over 
the entire plate thickness were observed under irradiation by a field with intensity of from 50 to 200 V- m -1. 
When the intensity exceeds 200 V. m -1, the composite plate is buckled, and local burns-through appear in 
its thickness. 

These results indicate that the proposed mathematical model is applicable for predicting temperature 
fields under SHF heating of composites and for determining admissible SHF regimes. 

This work was supported by the International Association for Promotion of Cooperation with Scientists 
from the Independent States of the Former Soviet Union (Grant INTAS-93-2600). 
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